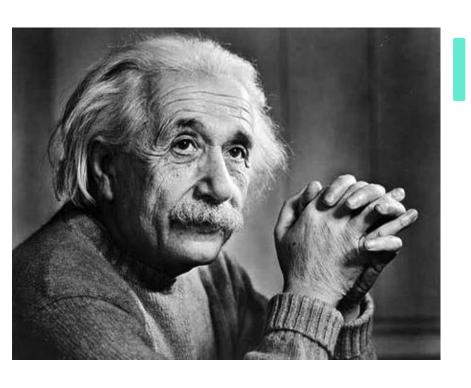


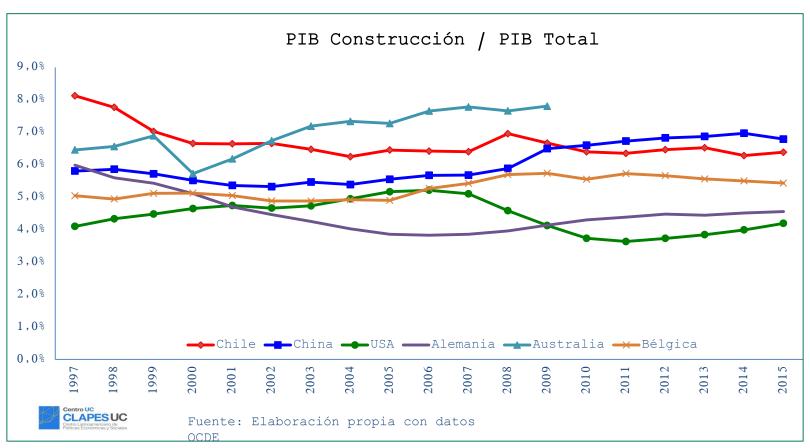
Contenidos

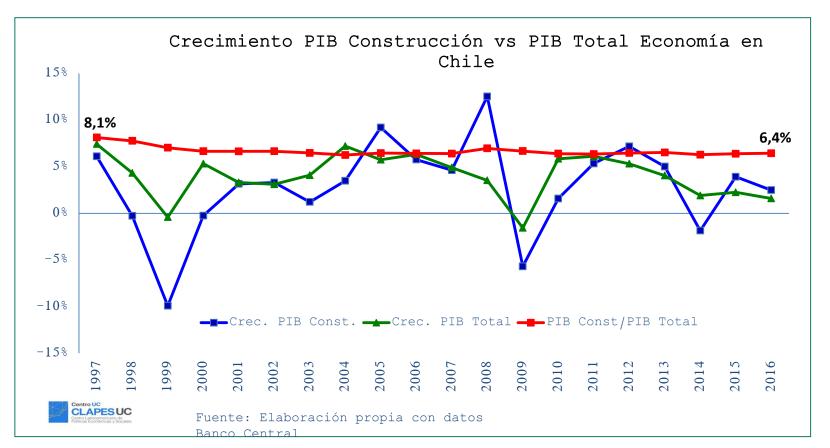

- 1. Relevancia de la industria de la construcción
- 2. Productividad en la industria de la construcción

3. Concepto de innovación

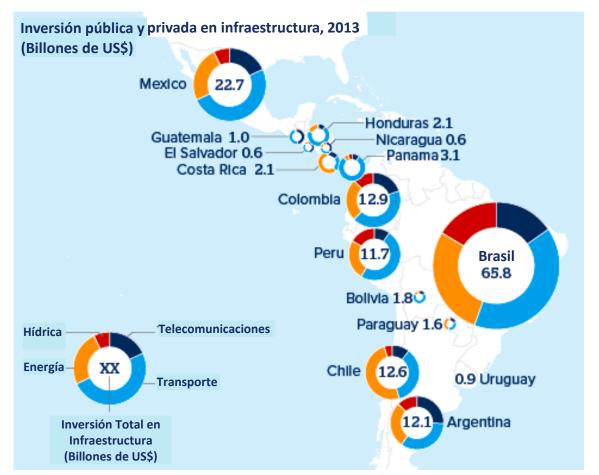
4. Innovación en la productividad en la construcción

5. Comentarios finales

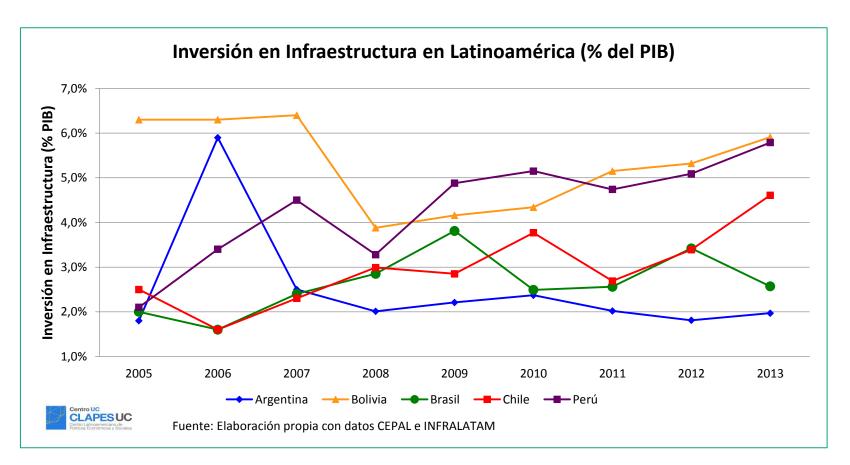

Reflexión sobre la innovación


"Si buscas resultados distintos, no hagas siempre lo mismo".

(Albert Einstein)

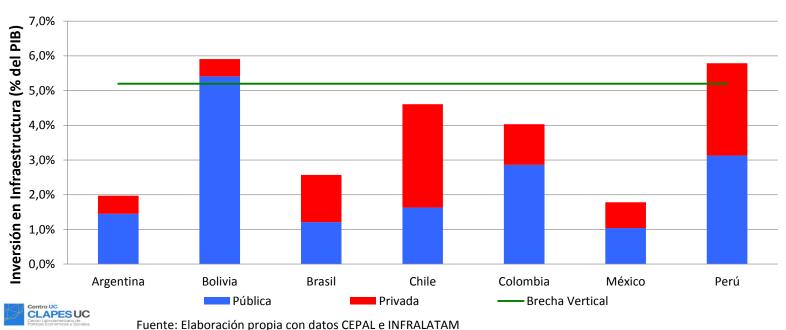

La relevancia de la construcción en el desarrollo económico

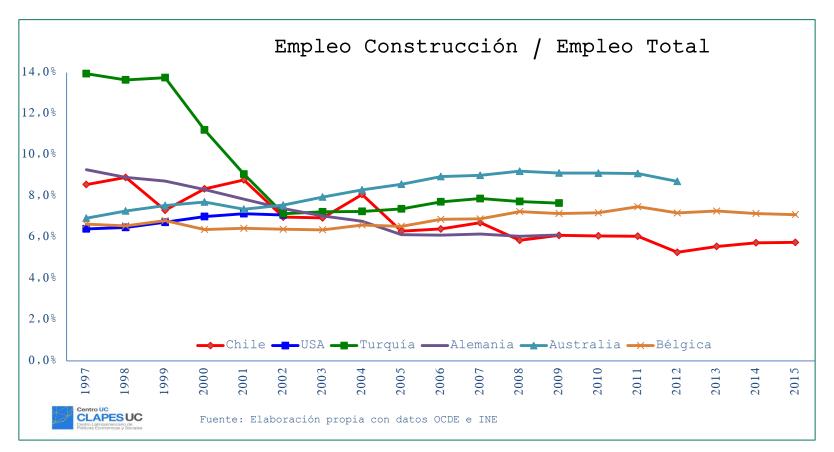
La relevancia de la construcción en la economía de Chile



Descomposición inversión en infraestructura en Latinoamérica

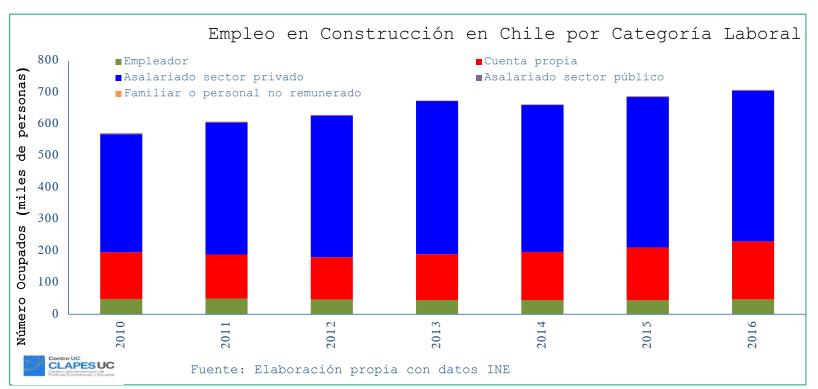
Fuente: CEPAL (2017)


Inversión en infraestructura en Latinoamérica 2005-2013


Brecha de inversión en infraestructura en Chile

 La CEPAL proyectó que los países de América Latina y el Caribe deberían invertir anualmente el <u>5,2% del PIB en infraestructura para satisfacer demandas internas entre los</u> <u>años 2006 y 2020.</u>

Inversión en Infraestructura en 2013 (% del PIB)



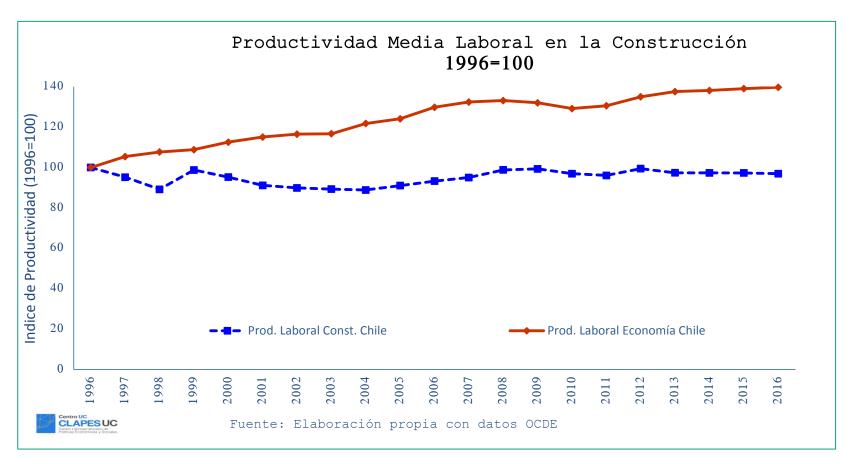
El empleo en la construcción

Composición del empleo en la construcción en Chile

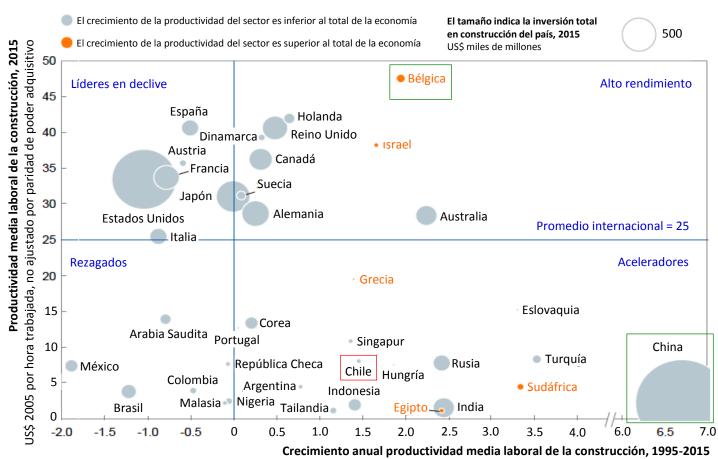
De los 19.646 empleos creados en 2016 en la industria de la construcción en Chile,
 15.664 (79,7%) corresponden a empleos de cuenta propia.

¿Qué entendemos por productividad y cómo la medimos?

- ¿Qué entendemos por productividad?
 - La <u>capacidad de producción de un sistema por unidad de recurso</u>, ya sea trabajo o capital.

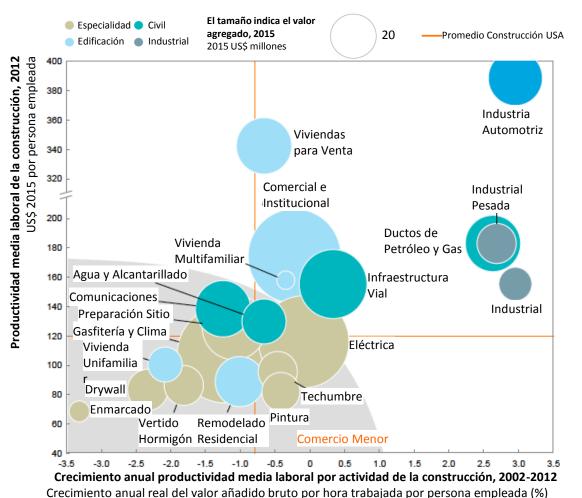

- ¿Cómo medimos la productividad?
 - Productividad Medial Laboral (PML)
 - Productividad Total de Factores (PTF)

Medidas de productividad - Productividad Media Laboral


- La <u>Productividad Media Laboral (PML)</u> representa el <u>aporte medio de cada</u> <u>trabajador en la producción</u>.
- Es definido como el cociente entre el PIB de la actividad y el número de empleados.
- También puede ser medido como el PIB por hora-hombre en la construcción.

$$PML = \frac{Y}{L}$$

Productividad media laboral en la construcción


Productividad en la construcción: contexto internacional

Crecimiento anual real del valor añadido bruto por hora trabajada por persona empleada (%)

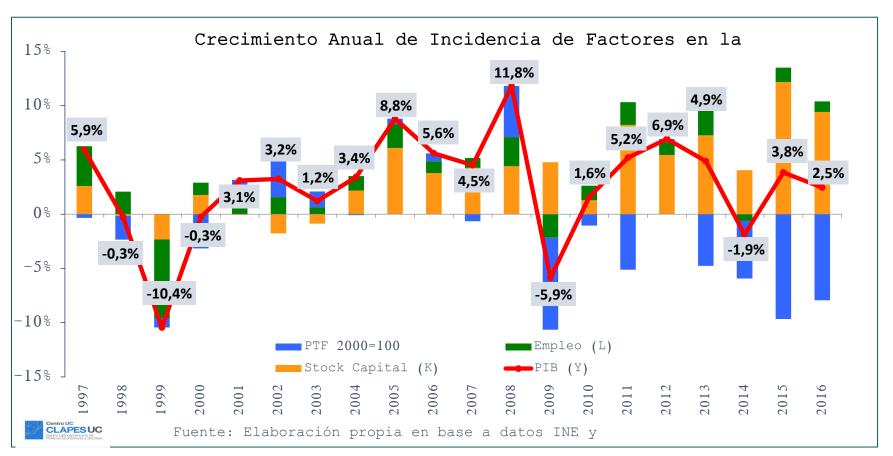
Fuente: McKinsey (2017)

Productividad en la construcción en USA: subsectores de la industria

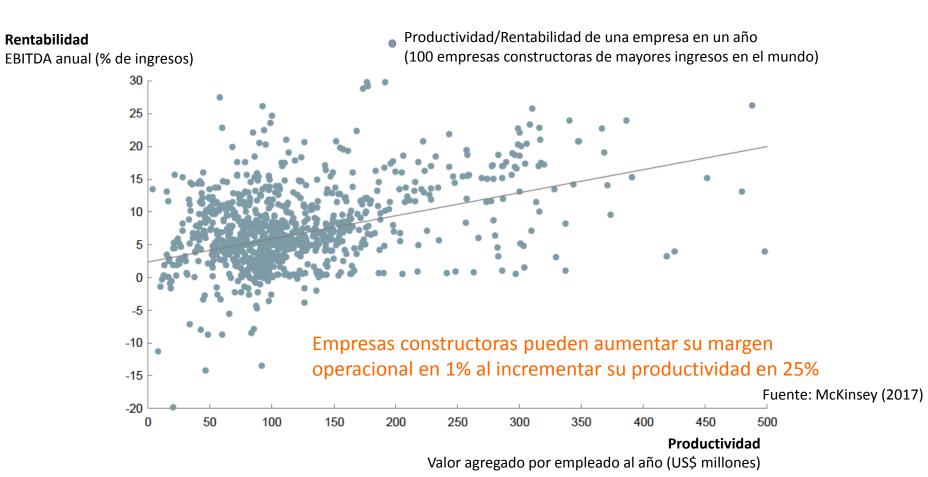
Fuente: McKinsey (2017)


Medidas de productividad – Productividad Total de Factores

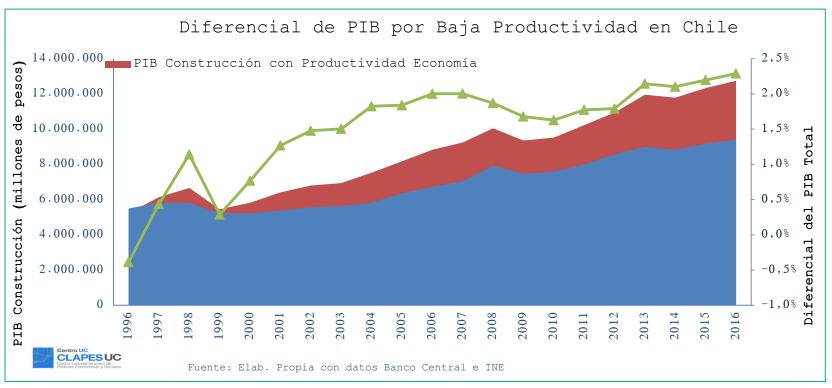
 La <u>Productividad Total de Factores (PTF)</u> es la contribución al crecimiento del valor agregado de la producción (Y) que no es justificado por los factores Capital (K) y Trabajo (L).


$$Y = A * L^{\alpha} * K^{1-\alpha}$$

- Algunos de los **determinantes de la PTF** son:
 - Innovación
 - Desarrollo del capital humano
 - Incorporación de nuevas tecnologías
 - Mejores prácticas organizacionales
 - Mejoras institucionales
 - Respeto de las "reglas del juego" y seguridad jurídica
 - Otras variables


Productividad Total de Factores en la construcción en Chile

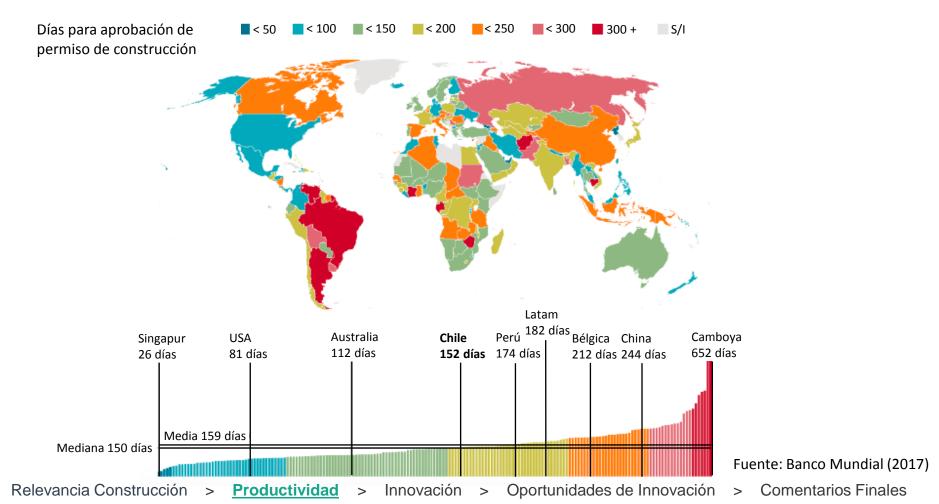
PTF desagregada en la construcción en Chile



Incidencia de la productividad en la rentabilidad de empresas constructoras

Diferencial de producción por baja productividad en construcción

• Si la productividad de la industria de la construcción fuese igual a la del total de la economía, el PIB nacional hubiese sido en promedio 1,5% mayor cada año entre 1996-2016.

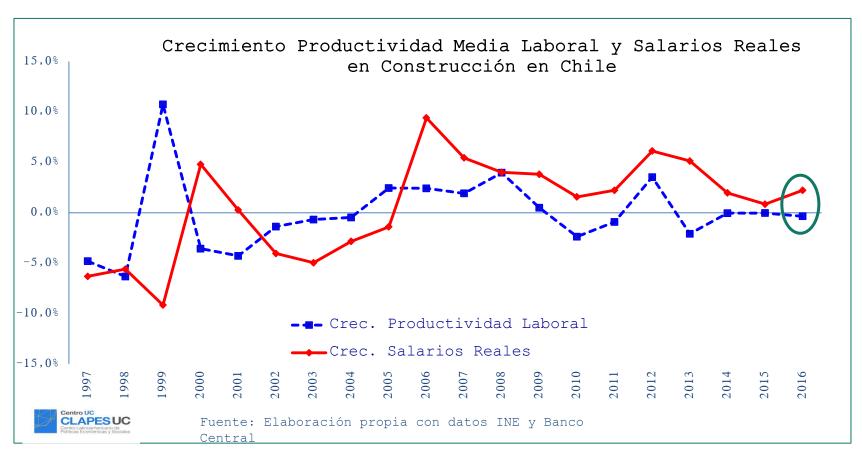


Causas de la baja productividad en la construcción (1/2)

1. Factores externos de la empresa:

- Extensa regulación y burocracia.
- Crecientes complejidades de proyectos de construcción.
- Industria altamente fragmentada (stakeholders).
- Requisitos y exigencias del propietario-mandante a la medida, dificultando estandarización.
- Entre otros.

Extensa burocracia en la industria de la construcción



Causas de la baja productividad en la construcción (2/2)

2. Factores internos de la empresa:

- Diseño organizacional inadecuado.
- Ineficiente gestión y administración de proyectos.
- Estructura contractual e incentivos desalineados.
- Mano de obra poco calificada.
- Bajos niveles de inversión en innovación y tecnología.
- Entre otros.

Desalineación entre productividad y salarios reales

¿Qué entendemos por innovación?

Incorporar ideas no triviales capaces de <u>generar cambios</u> encaminados a resolver necesidades en una empresa con la finalidad de <u>aumentar su</u> <u>competitividad y mejorar su posicionamiento en el mercado</u> (Park et al., 2004).

La aplicación de <u>ideas nuevas</u>, las que se encarnan en <u>productos, procesos,</u> <u>servicios o en los sistemas de organización, gestión o comercialización</u> (Gibbons, et al., 1994).

La **generación de circunstancias** adecuadas en una organización para llevar a cabo **cambios tecnológicos, de mercado y de organización** con cierto grado de incertidumbre (Tidd et al., 1997).

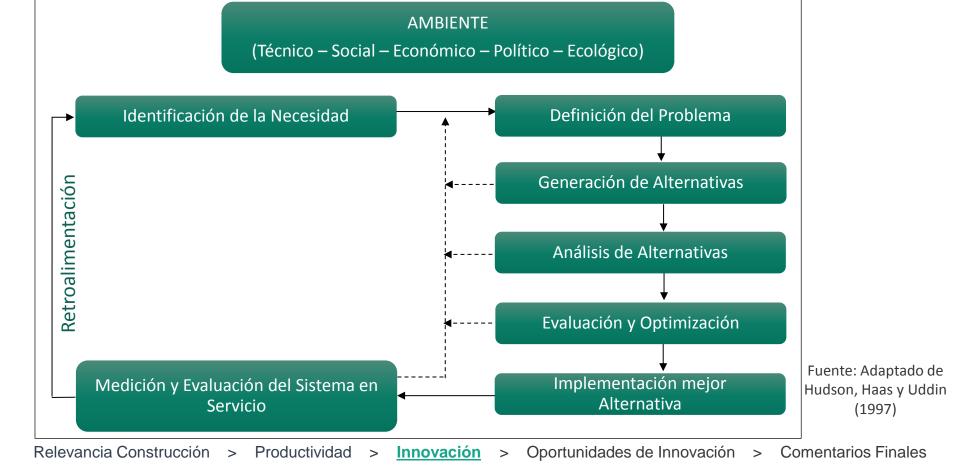
Objetivos de la innovación

Un proyecto de <u>innovación</u> de construcción puede incluir <u>cuatro objetivos</u> (Nam y Tatum, 1992):

- Mejorar la <u>competitividad</u> de la empresa/institución
- Aumentar su <u>capacidad técnica</u> para resolver problemas
- Motivar el <u>trabajo de los empleados</u>
- Lograr transferir las soluciones exitosas a proyectos posteriores

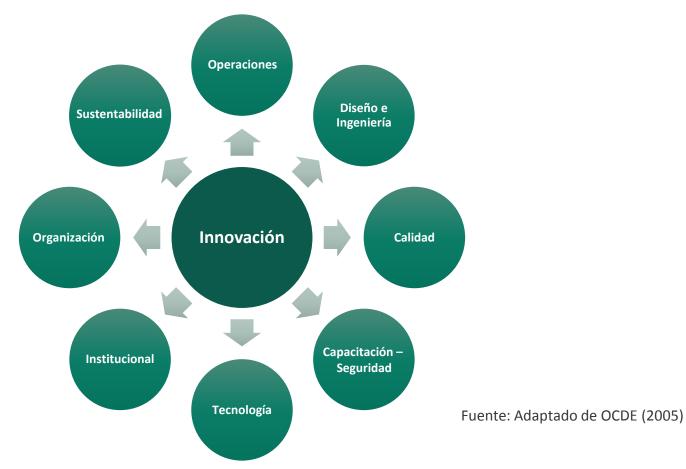

Desafíos de implementación de innovación en la construcción

¿Por qué si la innovación es tan importante en el desarrollo de la industria de la construcción no se logra implementar activamente?


- Cultura interna de la empresa resistente a cambios.
- Deficiente diálogo de la empresa con el entorno (clientes, subcontratistas, proveedores, etc.).
- Políticas públicas desajustadas a los problemas propios de la industria de la construcción.

Sectores involucrados en la innovación en la construcción

La innovación no solo requiere del esfuerzo de las empresas constructoras.


Visión de sistema para resolver problemas

Modelo de competitividad basado en innovación

La innovación es más que cambios tecnológicos

Oportunidades para mejorar la productividad mediante innovación (1/8)

1. Reformular la regulación:

- Modernizar y flexibilizar <u>regulación en función del nivel de riesgo</u> del proyecto.
- Focalizar regulación en <u>resultados totales y parciales en vez de</u> <u>requerimientos</u>.
- Simplificar y agilizar procesos de **permisos y aprobaciones** de proyectos.
- Asignar <u>subvenciones e incentivos para innovación</u>, especialmente en el área de la <u>sustentabilidad</u> (certificación LEED).
- Entre otros.

Ejemplo de mejora de productividad con agilización de permisos

- El gobierno de <u>Australia redujo el número de procesos regulatorios</u> para la aprobación de permisos de edificación de 14 a 10 (Banco Mundial, 2017).
- Con esto <u>se redujo en 25% el tiempo medio de aprobación de permisos</u> (150 a 112 días).
- Este cambio se tradujo en un <u>ahorro de 72% en costos del proceso de</u> <u>aprobación</u> por parte de inversionistas.
- Esta medida <u>no produjo efectos negativos en la calidad</u> del control de edificación en Australia (Indicador de Calidad de Control de Edificación (Banco Mundial).

2. Rediseñar el marco contractual:

- Estructurar el contrato para incentivar y apoyar la <u>colaboración y</u> coordinación entre stakeholders (aprender de experiencias del otro).
- Establecer un enfoque de contrato basado en la <u>asignación temprana de</u> <u>riesgos claves</u> del proyecto.
- Focalizar recursos en <u>definición clara del alcance</u>, <u>dividiendo el proyecto en</u>
 <u>paquetes manejables</u> para su posterior gestión.
- Contar con mecanismos de resolución temprana de controversias (MRTC).
- Entre otros.

Ejemplo de mejora de productividad con MRTC (Dispute Board)

- Marco para solucionar de manera eficiente y temprana las diferencias entre partes del proyecto.
 - Interpretaciones
 - Modificaciones
 - Asignación inadecuada de riesgos
- Se implementa una revisión continua por parte de profesionales indpenedientes, imparciales y calificados.

3. Optimizar el proceso de diseño:

- Evitar diseños excesivamente complejos y eliminar ambigüedades.
- Trabajar de manera <u>colaborativa</u> en etapas tempranas entre stakeholders para evitar problemas de <u>constructabilidad</u> en terreno.
- Focalizar un <u>diseño constructivo eficiente</u> que permita la <u>estandarización</u> de procesos y la maximización de elementos que se pueden producir fuera de obra (<u>prefabricados</u>).
- Entre otros.

Ejemplo de mejora de productividad con constructabilidad

- Revisión del diseño para que sea construible.
- Constructabilidad define la facilidad y eficiencia con las cuales se puede construir el proyecto.

Fuente: CIT - DICTUC

4. Perfeccionar la administración de la cadena de suministro:

- Establecer una <u>oficina central de suministro y logística</u> en la organización que <u>integre las necesidades</u> comunes de los distintos proyectos.
- Visualizar <u>cadena de suministro como un proyecto</u> que requiere constante <u>seguimiento y control</u>, desde la fase de pedido, entrega y bodegaje.
- Implementar <u>indicadores de adquisiciones</u> que evalúen estadísticamente el tiempo la calidad de suministro de los distintos proveedores.
- Emplear filosofías y sistemas de gestión de inventario de otras industrias.
- Entre otros.

5. Mejorar la gestión in-situ:

- Diseñar y aplicar <u>indicadores de rendimiento (KPI's)</u> que faciliten el seguimiento y control de operaciones en obra.
- Implementar <u>sistemas de control</u> que consideren planificaciones semanales enmarcadas en el plan maestro del proyecto.
- <u>Reducir variabilidad en la calidad</u> de todo tipo de productos relacionados al proyecto.
- Entre otros.

Ejemplo de mejora de productividad con Construcción Lean

- <u>Enfoque de gestión</u> de proyectos de construcción basado en <u>principios de</u> <u>la mejora continua</u>.
- Tiene como <u>objetivo minimizar las pérdidas y maximizar el valor del</u> <u>producto</u> final para el cliente.
- Implica la aplicación de técnicas que <u>incrementan la productividad de las</u> <u>operaciones</u> de construcción.
- Mejora la rentabilidad total del proyecto, eliminando los desperdicios (todo aquello que no agrega valor al producto final).

Ejemplo de mejora de productividad con filosofía 6 Sigma

- Metodología de mejora continua de operaciones basada en la reducción de la variabilidad para reducir los defectos en el producto.
- La meta de 6 Sigma es llegar a un <u>máximo de 3,4 defectos por millón de</u> <u>oportunidades</u> (DPMO).

Oportunidades para mejorar la productividad mediante innovación (6/8)

6. Incentivar uso de tecnología digital:

- Establecer un equipo de innovación tecnológica en la organización.
- Incitar el uso modelos digitales para el <u>diseño virtual como BIM 3D, 4D o 5D</u>
 para prevenir errores, omisiones, re-trabajo, sobre-costos y atrasos.
- Entre otros.

Ejemplo de mejora de productividad con BIM

- Metodología de trabajo colaborativo para el diseño y gestión del proyecto.
- Su objetivo es centralizar toda la información del proyecto (más que geométrica) en un modelo digital creado por todos los participantes.

Fuente: Building Smart

7. Emplear tecnología en obra:

- Aprovechar las tecnologías existentes en forma eficiente.
- Innovar con <u>materiales y tecnologías nuevas</u>, siempre que cumplan con los requerimientos.
- Avanzar en la <u>automatización</u> de procesos en la construcción mediante el uso de <u>equipos especiales, robótica, drones, impresoras 3D</u>.
- Invertir en investigación y desarrollo (aplicable a las medidas anteriores).
- Entre otros.

Ejemplo de mejora de productividad con materiales alternativos

- Polímero Etileno Tetraflouroetileno (ETFE) como reemplazo de vidrio: más flexible, liviano y ahorro energético en operación.
- Plásticos reciclados para reemplazar secciones de caminos de asfalto.

Fuente: Parque Olímpico Beijing, China

Fuente: McRebur Company, UK

Relevancia Construcción > Productividad > Innovación > Oportunidades de Innovación > Comentarios Finales

Ejemplo de mejora de productividad con impresoras 3D

• En Dubai se construyó con una impresora 3D un bloque de oficinas de 250 m² en 17 días a un costo de US\$ 140.000.

Fuente: Dubai 3D Printing Strategy

8. Capacitar mano de obra:

- Invertir en programas de <u>capacitación de directores de proyectos</u> basados en un <u>enfoque analítico de planificación eficiente</u>, y no de "apagar incendios".
- <u>Capacitar mano de obra</u> no solo en especialización técnica sino que también en <u>gestión de operaciones y seguridad</u>.
- Focalizar recursos en <u>sistemas de gestión del conocimiento</u> para retener, transferir y compartir aprendizajes entre trabajadores.
 - Instancias de comunicación formal e informal entre trabajadores
- Entre otros.

Comentarios finales

- La industria de la construcción <u>representa una parte importante de la</u> <u>economía</u> y por ende su productividad impacta el desarrollo del país.
- La industria de la construcción presenta una productividad menor a la del total de la economía, generándose así una necesidad de mejora.
- La <u>innovación</u> en la construcción debe ser vista como una <u>oportunidad para</u>
 <u>cerrar la brecha</u> existente en materia de productividad.
- La inversión en <u>investigación y desarrollo (I+D)</u> es un aspecto clave para incentivar la innovación tecnológica en la industria de la construcción.
- La adecuada y permanente <u>capacitación</u> es relevante para mejorar la productividad en la industria.

Referencias

- Banco Central de Chile (2017). Base de datos estadísticos, cuentas nacionales.
- CEPAL (2011). La brecha de infraestructura en América Latina y el Caribe. Santiago, Chile: División de Recursos Naturales e Infraestructura.
- CEPAL y Banco Interamericano de Desarrollo (2017). INFRALATAM: Datos de inversión en infraestructura económica en América Latina y el Caribe.
- De Solminihac, H., Gonzales, L. E. & Cerda, R. (2014). Documento de Trabajo N°11:
 Desarrollo de indicadores de productividad de la industria minera en Chile. Santiago,
 Chile: Centro Latinoamericano de Políticas Sociales y Económicas CLAPES UC.
- Harberger, A. (1972). Project evaluation. Chicago, United States: University of Chicago Press.
- Instituto Nacional de Estadísticas (2017). Estadísticas laborales, Encuesta Nacional de Empleo (ENE).
- McKinsey Global Institute (2017). Reinventing Construction: a Route to Higher Productivity. New York, United States: McKinsey & Company.

